A PREDUAL OF l_1 WHICH IS NOT ISOMORPHIC TO A C(K) SPACE

Y. BENYAMINI[†] AND J. LINDENSTRAUSS

ABSTRACT

We give an example of a Banach space X such that (i) X^* is isometric to l_1 , (ii) X is isometric to a subspace of $C(\omega^{\omega})$ and (iii) X is not isomorphic to a complemented subspace of any C(K) space.

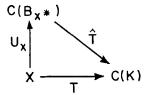
The example described in the abstract solves a problem which arose in several places in the literature. The first time the problem was mentioned seems to be in the paper by Bessaga and Pelczynski [1]. They give a complete isomorphic classification of all C(K) spaces (= the space of all continuous functions on a compact Hausdorff K) whose duals are isometric to l_1 . The authors of [1] ask whether every space whose dual is isometric (or even isomorphic) to l_1 must be isomorphic to a C(K) space and thus covered by their classification. In a more general context the problem arose, e.g., in [4], [5] and [6]. In these papers much space is devoted to the study of \mathscr{L}_{∞} spaces. These are those Banach spaces whose finite-dimensional subspaces behave like the finite-dimensional subspaces of C(K)spaces. The question raised in [4], [5], [6] whether every \mathcal{L}_{∞} space is isomorphic to a C(K) space, can be viewed as the question whether spaces isomorphic to C(K)spaces can be characterized by their local structure. The example given here gives a strong negative answer to this question and shows that the problem of isomorphic classification of separable \mathscr{L}_{∞} spaces (and the more restrictive class of separable preduals of $L_1(\mu)$ spaces) is wide open. The existence of such an example may be somewhat surprising in view of the known facts that preduals of $L_1(\mu)$ behave in many respects like C(K) spaces (see e.g. [3] and [4]) and that the duals of

[†] This is a part of the first author's Ph. D. Thesis prepared in the Hebrew University of erusalem under the supervision of the second author.

separable \mathcal{L}_{∞} spaces are isomorphic to the duals of separable C(K) spaces [7]. Let X be a Banach space. We define $\lambda(X) = \inf \|T\| \|T^{-1}\| \|P\|$ where the inf is taken over all possible isomorphisms T form X into a C(K) space and all possible projections P form C(K) onto TX. If X is not isomorphic to a complemented subspace of any C(K) space we put $\lambda(X) = \infty$. The following trivial lemma shows that in order to compute $\lambda(X)$ we do not have to consider all possible embeddings of X into an arbitrary C(K) space. It is enough to consider the canonical embedding $U_X: X \to C(B_X^*)$ where B_X^* is the unit ball of X^* in the w^* topology and $U_X x(x^*) = x^*(x)$.

LEMMA. For every Banach space X, $\lambda(X) = \inf \|P\|$, the infimum is taken over all bounded linear projections P from $C(B_X^*)$ onto U_XX .

PROOF. Put $\beta(X) = \inf \|P\|$, the infimum over all P as in the statement of the lemma. Clearly $\beta(X) \ge \lambda(X)$. To prove the converse, observe that if T is any bounded linear operator form X into a C(K) space, there is an operator $\hat{T}: C(B_X^*) \to C(K)$ so that $\|\hat{T}\| = \|T\|$ and the following diagram commutes



A suitable \hat{T} is defined by

$$\hat{T}f(k) = ||T||f(T^*\delta_k/||T||)$$

where $f \in C(B_X^*)$, $k \in K$ and $\delta_k \in C(K)^*$ is the Dirac measure at the point k. (If T = 0 we take $\hat{T} = 0$.) If T is an isomorphism of X into C(K) and Q a projection from C(K) onto TX then $U_X T^{-1} Q \hat{T}$ is a projection from $C(B_X^*)$ onto $U_X X$ of norm $\leq ||T|| ||T^{-1}|| ||Q||$. This shows that $\lambda(X) \geq \beta(X)$ Q.E.D.

We shall now present a construction which corresponds to a predual X of an L_1 space another predual Y = Y(X) of an L_1 space with $\lambda(Y) > \lambda(X)$ (if $\lambda(X) < \infty$). By iterating this construction we get preduals Z of L_1 spaces with $\lambda(Z)$ arbitrarily large and by taking a suitable direct sum also such Z with $\lambda(Z) = \infty$. Actually we shall not work with arbitrary preduals of L_1 spaces. Our X and Y = Y(X) also have an extreme point in their unit balls (i.e., both X and Y

are the spaces of all affine continuous functions on suitable Choquet simplices (cf. for example [3])).

Let X = A(S) be the space of all affine continuous functions on a Choquet simplex S. Let K be the compact Hausdorff space defined as follows: As a set, K is a disjoint union of the form $\{p, q, r_1, r_2, r_3\} \cup \bigcup_{\substack{i=1,2,3,4,\ldots\\j=1,2,3}} S_{i,j}$ where each $S_{i,j}$

is a copy of S. (We denote by $\phi_{i,j}\colon S\to S_{i,j}$ the identification map from S onto $S_{i,j}$.) The topology on K is defined by requiring that each $S_{i,j}$ is closed and open in K and its topology coincides with that of S (i.e. $\phi_{i,j}$ is a homeomorphism). The points p and q are isolated points of K while a basis for the neighborhoods of r_j (j=1,2,3) is given by the sets $\{r_j\}\cup\bigcup_{l=n}^\infty S_{i,j}, n=1,2,\cdots$. Let Y be the subspace of C(K) consisting of all $f\in C(K)$ such that $f_{|S_{i,j}|}$, the restriction of f to $S_{i,j}$, is affine and so that

$$f(r_1) = (f(p) + f(q))/2$$
, $f(r_2) = (2f(p) + f(q))/3$, $f(r_3) = (f(p) + 2f(q))/3$. (The affine structure on $S_{i,j}$ is again that induced by $\phi_{i,j}$ from S .) The norm in Y is the supremum norm.

It is easy to check that every $y^* \in Y^*$ has a unique representation of the form

$$y^* = \sum_{i,j} y_{i,j}^* + t_1 \delta_p + t_2 \delta q$$

with

$$||y^*|| = \sum_{l,j} ||y_{l,j}^*|| + |t_1| + |t_2|$$

where $y_{i,j}^*(f) = y_{i,j}^*(f|S_{i,j}) \in A(S_{i,j})^*$ and δ_p and δ_q are the Dirac measures $(\delta_p(f) = f(p))$. Hence

$$Y^* = R \oplus R \oplus \sum_{i,j} \oplus X_{i,j}^*$$

where every $X_{i,j}^*$ is isometric to X^* , R is the one dimensional space and all direct sums are in the l_1 sense. Thus Y^* is an $L_1(\nu)$ space for some measure ν . Moreover the function identically equal to 1 belongs to Y and therefore the unit ball of Y has an extreme point. It follows that Y can also be considered as the space of all affine continuous functions on some Choquet simplex.

The main result of this note is

THEOREM. Let X be the space of all affine continuous functions on some Choquet simplex. Let Y = Y(X) be the space constructed above. Then

$$\lambda(Y) \ge \lambda(X) + (500 \lambda(X))^{-1}$$

PROOF. We assume that $\lambda(X) < \infty$ If $\lambda(X) = \infty$ then clearly also $\lambda(Y) = \infty$ and there is nothing to prove.

Let us first introduce some more notations. We will use, whenever it is convenient, a single index α to stand for an arbitrary pair (i,j) $i=1,2,3,4,\cdots$, j=1,2,3. For any α define the operator $J_{\alpha}\colon X\to Y$ by

$$J_{\alpha}f(k) = \begin{cases} f(s) & \text{if } k = \phi_{\alpha}s \\ 0 & \text{if } k \notin S_{\alpha}. \end{cases}$$

(Recall that $\phi_{\alpha} \colon S \to S_{\alpha}$ is the identification map). The operator J_{α} identifies X with the subspace of Y consisting of all these functions which vanish outside S_{α} . The map J_{α} has a one-sided inverse $R_{\alpha} \colon Y \to X$ of norm 1 defined by $R_{\alpha}f(s) = f(\phi_{\alpha}s)$.

Let $e_1 \in Y$ be the function on K defined by

(1)
$$e_1(p) = 1$$
, $e_1(q) = 0$ $e_1(k) = \begin{cases} \frac{1}{2} & \text{if } k \in S_{i,1}, & i = 1, 2, \dots \\ \frac{2}{3} & \text{if } k \in S_{i,2}, & i = 1, 2, \dots \\ \frac{1}{3} & \text{if } k \in S_{i,3}, & i = 1, 2, \dots \end{cases}$

Define $e_2 \in Y$ by

(2)
$$e_2 = e - e_1$$
 where $e(k) = 1$ for all $k \in K$.

For each α we define an operator $T_{\alpha}: C(B_{\chi}^*) \to C(B_{\chi}^*)$ by

(3)
$$T_{\alpha}f(y^*) = \begin{cases} (1 - \psi_{\alpha}(y^*))f(J_{\alpha}^*y^*/(1 - \psi_{\alpha}(y^*))), & \text{if } \psi_{\alpha}(y^*) < 1 \\ 0 & \text{if } \psi_{\alpha}(y^*) = 1, \end{cases}$$

where $f \in C(B_X^*)$, $y^* \in B_Y^*$, and

(4)
$$\psi_{\alpha}(y^{*}) = \left| (y^{*} - R_{\alpha}^{*} J_{\alpha}^{*} y^{*})(e_{1}) \right| + \left| (y^{*} - R_{\alpha}^{*} J_{\alpha}^{*} y^{*})(e_{2}) \right|.$$

The operator T_{α} is well defined. Indeed, by (1) and (2) we have that $\|e_1 \pm e_2\| \le 1$, hence $\psi_{\alpha}(y^*) \le \|y^* - R_{\alpha}^* J_{\alpha}^* y^*\|$ and thus

$$\psi_{\alpha}(y^{*}) + \|J_{\alpha}^{*}y^{*}\| = \psi_{\alpha}(y^{*}) + \|R_{\alpha}^{*}J_{\alpha}^{*}y^{*}\|$$

$$\leq \|y^{*} - R_{\alpha}^{*}J_{\alpha}^{*}y^{*}\| + \|R_{\alpha}^{*}J_{\alpha}^{*}y^{*}\| = \|y^{*}\| \leq 1.$$

It follows that $J_{\alpha}^* y^* / (1 - \psi_{\alpha}(y^*)) \in B_X^*$. It is easily checked that $T_{\alpha} f(y^*)$ is a continuous function of y^* .

We note further that $||T_{\alpha}|| \le 1$ and that the following diagram commutes:

(6)
$$C(B_{X*}) \xrightarrow{T_{\alpha}} C(B_{Y*})$$

$$V_{X} \downarrow \qquad \downarrow U_{Y}$$

$$X \xrightarrow{J_{\alpha}} Y$$

Indeed, if $x \in X$, $y^* \in B_Y$ with $\psi_{\alpha}(y^*) < 1$ then

$$T_{\alpha}U_{X}x(y^{*}) = (1 - \psi_{\alpha}(y^{*}))U_{X}x(J_{\alpha}^{*}y^{*}/(1 - \psi_{\alpha}(y^{*})))$$
$$= J_{\alpha}^{*}y^{*}(x) = y^{*}(J_{\alpha}x) = U_{Y}J_{\alpha}x(y^{*}).$$

If $\psi_{\alpha}(y^*) = 1$ the verification is similar.

Put

(7)
$$\lambda = \lambda(X), \qquad \varepsilon = 1/500 \lambda.$$

We assume that there is a projection P of norm $\leq \lambda + \varepsilon$ from $C(B_{Y^{\bullet}})$ onto $U_{Y}Y$ and show that this leads to a contradiction.

By (6) $R_{\alpha}U_{x}^{-1}PT_{\alpha}U_{x}$ is the identity map of X and hence by (7)

(8)
$$||R_{\alpha}U_{\gamma}^{-1}PT_{\alpha}|| \geq \lambda.$$

Since X^* is an L_1 space and $R_{\alpha}e$ is an extreme point in the unit ball of X it follows from (8) that there is an $x_{\alpha}^* \in X^*$ so that

$$(9) 1 = ||x_{\alpha}^{*}|| = x_{\alpha}^{*}(R_{x}e), ||(R_{\alpha}U_{\gamma}^{-1}PT_{\alpha})^{*}x_{\alpha}^{*}|| \geq \lambda.$$

Put $y_{\alpha}^* = R_{\alpha}^* x_{\alpha}^* \in Y^*$. Then

(10)
$$1 = ||y_{\alpha}^{*}|| = y_{\alpha}^{*}(e), \qquad ||T_{\alpha}^{*}(U_{\gamma}^{-1}P)^{*}y_{\alpha}^{*}|| \geq \lambda.$$

From the first part of (10) and the definition of Y it follows that

(11)
$$w^* \lim_{i} y_{1,i}^* = (\delta_p + \delta_q)/2 \qquad w^* \lim_{i} y_{i,2}^* = (2\delta_p + \delta_q)/3$$
$$w^* \lim_{i} y_{i,3}^* = (\delta_p + 2\delta_q)/3$$

[†] Actually this is the case only if the operator $R_{\alpha}U_{\gamma}^{-1}PT_{\alpha}$ attains its norm. In the general case, we must replace λ by an arbitrary $\lambda' < \lambda$. This will require only some trivial changes in the argument.

Define now

(12)
$$\mu_{\alpha} = (U_{\gamma}^{-1}P)^* y_{\alpha}^* \in C(B_{\gamma^*})^*.$$

Then

(13)
$$||T_{\alpha}^*\mu_{\alpha}|| \geq \lambda, \qquad ||\mu_{\alpha}|| \leq ||P^*|| \leq \lambda + \varepsilon,$$

and

$$\mu_1 \stackrel{\text{def}}{=} w * \lim_{i} \mu_{i,1} = ((U_Y^{-1} P) * \delta_p + (U_Y^{-1} P) * \delta_q)/2$$

(14)
$$\mu_2 \stackrel{def}{=} w^* \lim_i \mu_{i,2} = (2(U_Y^{-1}P)^* \delta_p + (U_Y^{-1}P)^* \delta_q)/3$$

$$\mu_3 \stackrel{\text{def}}{=} w^* \lim_i \mu_{i,3} = ((U_Y^{-1}P)^* \delta_p + 2(U_Y^{-1}P)^* \delta_{i,j})/3$$

In particular,

(15)
$$\mu_1 = (\mu_2 + \mu_3)/2.$$

Since $PU_Ye = U_Ye$,

$$(U_{Y}^{-1}P)^{*}\delta_{p}(U_{Y}e) = \delta_{p}(U_{Y}^{-1}PU_{Y}e) = \delta_{p}(e) = 1$$
,

with a similar relation holding with q instead of p, we get that

(16)
$$\mu_i(U_y e) = 1$$
 $j = 1, 2, 3.$

 $(\mu_j$ being a linear functional on $C(B_{Y^*})$, can and will be considered also as a measure on B_{Y^*} . If we consider μ_j as a measure, we write (16) as

$$\int_{B_Y^*} U_Y(e) d\mu_j = 1$$

For any index α and positive number $\eta < 1$ let $G_{\alpha}^{\eta} = \{y^*; y^* \in B_{Y^*}, \psi_{\alpha}(y^*) \ge \eta\}$. Then for $f \in C(B_{X^*})$ with ||f|| = 1 we have by (3) that $|T_{\alpha}f(y^*)| < 1 - \eta$ for $y^* \in G_{\alpha}^{\eta}$. Thus for every measure μ on B_{Y^*} whose support is contained in G_{α}^{η} we get that

(17)
$$||T_{\alpha}^*\mu|| \leq (1-\eta) ||\mu||.$$

Let us define the measures σ_{α} and τ_{α} on B_{Y^*} by

(18)
$$\sigma_{\alpha}(A) = \mu_{\alpha}(A \cap G_{\alpha}^{10\varepsilon}), \qquad \tau_{\alpha} = \mu_{\alpha} - \sigma_{\alpha}$$

for every Borel set A in B_{Y^*} (ϵ is the number given in (7)). By (13) and (17),

$$\lambda \leq \|T_{\alpha}^{*}\mu_{\alpha}\| \leq \|T_{\alpha}^{*}\sigma_{\alpha}\| + \|T_{\alpha}^{*}\tau_{\alpha}\| \leq (1 - 10\varepsilon)\|\sigma_{\alpha}\| + \|\tau_{\alpha}\|$$
$$= (1 - 10\varepsilon)\|\sigma_{\alpha}\| + \|\mu_{\alpha}\| - \|\sigma_{\alpha}\| \leq \lambda + \varepsilon - 10\varepsilon\|\sigma_{\alpha}\|.$$

Hence,

$$||\sigma_{\alpha}|| \leq 1/10.$$

We note also that by (18)

(20)
$$\tau_{\alpha} \text{ is supported on } \{y^*; \psi_{\alpha}(y^*) \leq 10\varepsilon\}.$$

Consider now the following three subsets of B_{Y*}

$$F_{1} = \{y^{*}; y^{*} = t(\delta_{p} + \delta_{q})/2 + u^{*}, |t| + ||u^{*}|| \le 1, |u^{*}(e_{1})| + |u^{*}(e_{2})| \le 10\varepsilon\}$$

$$F_{2} = \{y^{*}; y^{*} = t(2\delta_{p} + \delta_{q})/3 + u^{*}, |t| + ||u^{*}|| \le 1, |u^{*}(e_{1})| + |u^{*}(e_{2})| \le 10\varepsilon\}$$

$$F_{3} = \{y^{*}; y^{*} = t(\delta_{p} + 2\delta_{q})/3 + u^{*}, |t| + ||u^{*}|| \le 1, |u^{*}(e_{1})| + |u^{*}(e_{2})| \le 10\varepsilon\} \quad (21)$$

These sets have the following property: If, for a given j, $\psi_{i,j}(z_i^*) \leq 10\varepsilon$ for $i=1,2,\cdots$ and some $z_i^* \in B_Y$, then any limit point of the sequence $\{z_i^*\}_{i=1}^\infty$ belongs to F_j . Indeed, take e.g. j=1 and assume that $\psi_{i,j}(z_i) \leq 10\varepsilon$. This means, by (4), that $z_i^* = u_i^* + v_i^*$ where $||u_i^*|| + ||v_i^*|| = ||z_i^*|| \leq 1$, $v_i^* = R_{i,j}^* J_{i,j}^* z_i^*$ and $|u_i^*(e_1)| + |u_i^*(e_2)| \leq 10\varepsilon$. By the definition of Y every limit point of the sequence v_i^* is of the form $t\delta_{r_1} = t(\delta_p + \delta_q)/2$. Hence every limit point of $\{z_i^*\}$ belongs to F_1 . It follows from this observation and (20) that every w^* limit point of $\{\tau_{i,j}\}_{i=1}^\infty$ is supported on F_j .

We note that if $y^* \in F_1 \cap F_2$ then

$$y^* = t_1(\delta_p + \delta_q)/2 + u_1^* = t_2(2\delta_p + \delta_q)/3 + u_2^*$$

By applying the functionals to e_1 and e_2 we get that

$$|t_1/2 - 2t_2/3| < 20\varepsilon$$
, $|t_1/2 - t_2/3| < 20\varepsilon$,

and hence $|t_1|, |t_2| \le 120\varepsilon$. Similar computations for points in $F_1 \cap F_3$ or $F_2 \cap F_3$ show that if H_j is the subset of F_j obtained by requiring in (21) that $|t| \ge 125\varepsilon$ then every set H_j is disjoint from the union of the two F sets with different indices.

We return now to the measures $\mu_{\alpha} = \sigma_{\alpha} + \tau_{\alpha}$ (cf, (18)). By (14), (19), (20) and the preceding remarks we get that for j = 1, 2, 3

(22)
$$\mu_j = \tau_j + \sigma_j, \quad \tau_j \text{ supported on } F_j, \quad \|\sigma_j\| \le 1/10.$$

For every j we decompose τ_j into two measures by putting

(23)
$$\rho_{j}(A) \leq \tau_{i}(A \cap H_{j}), \quad \gamma_{i} = \tau_{i} - \rho_{j}.$$

By the definition of H_j and F_j it follows that γ_j is supported on the set $\{y^*; |y^*(e)| \le 150\epsilon\}$. Hence by (7)

$$\left| \int_{B_Y^*} U_Y(e) d\gamma_j \right| \leq 150\varepsilon, \quad \|\gamma_j\| \leq 150\varepsilon(\lambda + \varepsilon) < 1/3.$$

By (22),

$$\left| \int_{B_{Y}}^{*} U_{Y}(e) d\sigma_{j} \right| \leq \|\sigma_{j}\| \leq 1/10.$$

Hence, by (16)

(24)
$$\|\rho_j\| \ge \left| \int_{B_{\nu,*}} U_{\gamma}(e) d\rho_j \right| \ge 1 - 1/3 - 1/10 > 1/2,$$

By (15)

$$\rho_1 = \frac{\rho_2 + \gamma_2 + \sigma_2 + \rho_3 + \gamma_3 + \sigma_3}{2} - \gamma_1 - \sigma_1,$$

but this contradicts (24) since $\rho_2, \gamma_2, \rho_3, \gamma_3$ and γ_1 all vanish on subsets of H_1 , while $\|(\sigma_2 + \sigma_3)/2 - \sigma_1\| \le 1/5$. This concludes the proof of the theorem.

Using the theorem and starting from any A(S) space X_1 we can construct inductively a sequence of simplex spaces $X_{n+1} = Y(X_n)$ so that, if $\lambda_n = \lambda(X_n)$ then $\lambda_{n+1} \ge \lambda_n + 1/500\lambda_n$ and hence $\lambda_n \uparrow \infty$. The direct sum in the c_0 norm $X_\infty = (\Sigma \oplus X_n)_{c_0}$ is a space whose dual is an L_1 space for which $\lambda(X_\infty) = \infty$. If we start with X_1 = the one dimensional space, it is clear that X_∞ will be isometric to a subspace of $C(\omega^\omega)$ (cf. e.g. [1] for the terminology). Hence we get

COROLLARY 1. There is a Banach space X such that

- (1) X^* is isometric to l_1
- (2) X is isometric to a subspace of $C(\omega^{\omega})$
- (3) X is not isomorphic to a complemented subspace of any C(K) space.

In [2] Gurari constructed a separable Banach space whose dual is an L_1 space, which has some special interesing properties. This space is unique up to almost isometry (cf. [2] and [3] for details). In [8] it was shown that every separable predual of $L_1(\mu)$ is isometric to a complemented subspace of the Gurari space. From Corollary 1 we get thus

COROLLARY 2. The Gurari space is not isomorphic to a complemented subspace of a C(K) space.

REFERENCES

- 1. C. Bessaga and A. Pelczynski, Spaces of continous functions (IV), Studia Math. 19 (1960), 53-62.
- 2. V. I. Gurari, Space of universal disposition, isotropic spaces and the Mazur problem on rotations of Banach spaces, Sibirski Math. Z. 7 (1966), 1002-1013.
- 3. A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are L_1 spaces and their representing matrices, Acta Math. 126 (1971), 165-193.
 - 4. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. No. 48, 1964.
- 5. J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in \mathcal{L}_p spaces and their applications, Studia Math. 29 (1968), 275–326.
 - 6. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p spaces, Israel J. Math. 7 (1969), 325-349.
- 7. C. Stegall, Banach spaces whose duals contain l_1 (Γ) with applications to the study of dual L_1 (μ) spaces, Trans. Amer. Math. Soc. (to appear).
 - 8. P. Wojtaszczyk, Some remarks on the Gurari space, Studia Math. 41 (1972), 207-210-

THE HEBREW UNIVERSITY OF JERUSALEM